domingo, 22 de marzo de 2020

OVAL, OVOID AND SPIRAL



ASSIGMENTS
PART 1. Draw an ovoid, an oval and a spiral in the same manner that they are drawn in the picture below.

Use  graphite pencils or mechanical pencils (2H or HB)

Use a DIN A4 paper: 29,7 x 21 cm (Basik or regular paper=folio).
You will need a compass, and a set of squares or a ruler







PART 2. -Copy the outline of these shapes (2D) on a Basik paper and try to draw real objects with the same form (3D) in the same manner that is shown in this picture. i
Use colour pencils, markers, watercolours, etc.
If you are able to use the 0,8 fine liner to draw the outline that is fine  (please use the compass to do it, don´t do them freehand).


These constructions are made with GeoGebra. As you know they are interactive (you can change the position of the blue points). Don´t forget to put axis CD horizontal the way you can see on this picture.

Here you have a video in case you need it.

Oval construction given its minor axis

Ovoid construction given its minor axis
If you pay a bit of attention you will realize that we draw the ovoide the exact same way we draw the oval. 

Spiral
How to draw a involute of a triangle
Versión en español



jueves, 19 de marzo de 2020

PRESENTACIÓN CON VUESTROS TRABAJOS



Os dejo aquí esta presentación para que podamos compartir los trabajos que estáis haciendo como habríamos hecho de estar en el aula. Podéis hacerles una foto con el móvil o escanearlos, y enviármela a mi correo (ester.alonso@educamadrid.org) para que yo lo incluya en la presentación.





Si queréis hacer las consultas públicamente, os he dejado en la barra de la derecha del blog un enlace a un documento editable donde poder hacerlo. El foro está enlazado a esta imagen.



Si tenéis alguna pregunta, no dudéis en consultarme.

¡¡¡Nos veremos pronto!!!


martes, 10 de marzo de 2020

Designing a Yin-Yang symbol (tangencies)

TANGENCIES

Two elements (circles or arcs + other circles or arcs or even straight lines) are tangent when they have a common point called the point of tangency. This word has latin roots: the word TANGERE literally means to touch=TOCAR in spanish. 
Algo tangible (misma familia que tangere) es algo que puede tocarse.




In this particular project we are going to work with circles and arcs.
To do so, it is essential to notice that the centers of the arcs are going to be aligned with the point of tangency (as you can see on the picture below). This is one of the fundamental properties of tangencies.

We are going to use the yin yang symbol because it is an application of simple tangencies and it´s quite easy to do.

                                                                                                                                     


In the video bellow you can find a brief explanation of the ying and yang theory (only till minute 2:09). In order for you to do the next project you need to know something about it.

 This assignment has two parts:

FIRST PART (after watching the video)


  • As usual, we are going to draw 4 sketches so that you can pick the best one (2 days). Use colour pencils, watercolour, markers...


Download the worksheet and print it out.

Notice that you have more symbols than needed. You may use the other two if you wish, or in case  you make a mistake. Remember that you need to create, at least, four different sketches.




If you don´t have the opportunity of printing the worksheet, you can draw your own symbols following the steps given on this video (use the same dimensions). There´s no need to draw more than four...





-----------------------------------------------------------------------------------------------------------


PART TWO 

  • Choose the best of these sketches and draw it on a basik sheet of paper (DIN A4). Multiply the dimensions given on the video above by two or use a smaller radius (8 cm is ok) following this other steps.











------------------------------------------------------------------------------------------------------------

 EXAMPLES

These are examples of what I would like you to get...